Asymptotics of orthogonal polynomials for a weight with a jump on [ − 1 , 1 ]
نویسنده
چکیده
We consider the orthogonal polynomials on [−1, 1] with respect to the weight wc (x) = h (x) (1− x) (1 + x) Ξc (x) , α, β > −1, where h is real analytic and strictly positive on [−1, 1], and Ξc is a step-like function: Ξc(x) = 1 for x ∈ [−1, 0) and Ξc(x) = c, c > 0, for x ∈ [0, 1]. We obtain strong uniform asymptotics of the monic orthogonal polynomials in C, as well as first terms of the asymptotic expansion of the main parameters (leading coefficients of the orthonormal polynomials and the recurrence coefficients) as n → ∞. In particular, we prove for wc a conjecture of A. Magnus regarding the asymptotics of the recurrence coefficients. The main focus is on the local analysis at the origin. We study the asymptotics of the Christoffel-Darboux kernel in a neighborhood of the jump and show that the zeros of the orthogonal polynomials no longer exhibit the clock behavior. For the asymptotic analysis we use the steepest descendent method of Deift and Zhou applied to the non-commutative Riemann-Hilbert problems characterizing the orthogonal polynomials. The local analysis at x = 0 is carried out in terms of the confluent hypergeometric functions. Incidentally, we establish some properties of these functions that may have an independent interest.
منابع مشابه
Strong asymptotics for Gegenbauer-Sobolev orthogonal polynomials
We study the asymptotic behaviour of the monic orthogonal polynomials with respect to the Gegenbauer-Sobolev inner product (f, g)S = 〈f, g〉 + λ〈f ′, g′〉 where 〈f, g〉 = ∫ 1 −1 f(x)g(x)(1 − x 2)α−1/2dx with α > −1/2 and λ > 0. The asymptotics of the zeros and norms of these polynomials is also established. The study of the orthogonal polynomials with respect to the inner products that involve der...
متن کاملUniform Asymptotics for Discrete Orthogonal Polynomials with Respect to Varying Exponential Weights on a Regular Infinite Lattice
Abstract. We consider the large-N asymptotics of a system of discrete orthogonal polynomials on an infinite regular lattice of mesh 1 N , with weight e , where V (x) is a real analytic function with sufficient growth at infinity. The proof is based on formulation of an interpolation problem for discrete orthogonal polynomials, which can be converted to a Riemann-Hilbert problem, and steepest de...
متن کاملOn asymptotic properties of Freud-Sobolev orthogonal polynomials
In this paper we consider a Sobolev inner product (f, g)S = ∫ fgdμ+ λ ∫ f ′g′dμ (1) and we characterize the measures μ for which there exists an algebraic relation between the polynomials, {Pn}, orthogonal with respect to the measure μ and the polynomials, {Qn}, orthogonal with respect to (1), such that the number of involved terms does not depend on the degree of the polynomials. Thus, we reac...
متن کاملA New Class of Orthogonal Polynomials1
A new class of orthogonal polynomials is introduced which generalizes the Bernstein-Szegö polynomials and includes the associated polynomials as well. The purpose of this paper is to give a natural extension of the Bernstein-Szegö orthogonal polynomials for a general class of weight functions. A nonnegative function w defined on the real line is called a weight function if w > 0, fRw > 0 and al...
متن کاملGeneralized trace formula and asymptotics of the averaged Turan determinant for polynomials orthogonal with a discrete Sobolev inner product
Let be a finite positive Borel measure supported on [−1, 1] and introduce the discrete Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f (x)g(x) d (x)+ K ∑ k=1 Nk ∑ i=0 Mk,if (ak)g (ak), where the mass points ak belong to [−1, 1], and Mk,i > 0(i = 0, 1, . . . , Nk). In this paper, we obtain generalized trace formula and asymptotics of the averagedTuran determinant for the Sobolev-type orthogonal pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009